

Available online at: http://inventory.poltekatipdg.ac.id/

INVENTORY

Industrial Vocational E-Journal on Agroindustry

Analisis Penyebab Kegagalan Mesin *Wrapping* Menggunakan *Failure Mode And Effect Analysis* di PT. X

Candrianto ¹, Rizaldi Sardani ¹, Rizki Fadhillah Lubis ¹, M. Zakaria ¹

ARTICLE INFORMATION

Received: May 30, 2021 Revised: June 28, 2021 Available online: June 30, 2021

KEYWORDS

Failure Mode and Effect Analysis, Risk Priority Number, Wrapping Machine

CORRESPONDENCE

Name: Candrianto

E-mail: candriantok emenper in @gmail.com

ABSTRACT

PT. X is an industry that produces green tea and black tea. In this study, there are often problems with the wrapping machine due to the age of use and the tight schedule of usage in the wrapping machine. If the machine operates in an unstable condition, it will greatly affect the results of the production. Damaged components such as cutting blades, heating heaters, thermo control and bearings. By using the Failure Mode and Effect Analysis (FMEA) method and also calculating the Risk Priority Number (RPN) value, the highest RPN value to the lowest is obtained, namely Cutting Knife (RPN = 100), Heater (RPN = 90), Thermo Control (RPN = 72) and Bearings (RPN = 36). It can be seen that the cause of damage to the wrapping machine and also the highest RPN calculation is found in the damage to the cutting knife whose RPN value is 100. From the analysis of the damage to the cutting knife, the author provides a suggested repair plan for the company so that it can be implemented in the company which can later improve the quality of the machine to be operated. for the future which cannot be separated from the supervisory role of the operators in charge of their cooperation to improve quality and the quality control team that always monitors quality.

PENDAHULUAN

PT. X merupakan industri hilir teh manufaktur yang mengolah teh bubuk menjadi produk teh celup dan teh seduh yang siap dipasarkan. Dalam memproduksi teh menggunakan berbagai macam dus dalam produks sesuai dengan teh yang dipesan konsumen seperti dus walini BP1, dus walini hitam, dus walini jasmine, dus walini tah hijau, dus walini rasa leci, dus walini rasa mint, dus walini rasa lemon, dus walini amplop, dus goalpara, dan dus gunung mas. Suatu perencanaan produksi dapat tidak lancar apabila ada bagian mesin yang rusak atau tidak bisa beroperasi. Oleh karena itu kerena itu perawatan mesin merupakan kegiatan yang diperlukan dalam kegiatan produksi [1]. Pada PT. X belum memiliki sistem pemeliharaan yang tertata dengan baik menyebabkan sering terjadinya kerusakan dan berhentinya produksi hingga kerusakan selesai diperbaiki. Mesin Wrapping merupakan mesin yang digunakan untuk melakukan proses pengemasan dus dengan plastik OPP dimasukkan

kedalam karton (pengkartonan). Permasalahan yang terjadi pada PT. X antara lain yaitu pemanas heater, seal, dan pisau pemotong. Jika mesin tersebut mengalami kerusakan maka akan menghambat proses produksi dan menidentifikasi resiko kegagalan produk cacat.

Perawatan mesin dapat dilakukan sebagai upaya menangani permasalahan yang terjadi pada perusahaan tersebut, salah satunya dengan menggunakan metode Failure Mode and Effect Analysis (FMEA). Penelitian sebelumnya terkait metoda tersebut diantaranya Reza, et al [2] untuk mengetahui penyebab kegagalan mesin Mandrel Tension Reel yang terjadi sehingga bisa dilakukan perbaikan dimana hasil menunjukkan terdapat 8 mode kegagalan dari 2 item yang ada pada subsistem mandrel. Kemudian Sari et al, [3] menggunakan metoda tersebut untuk mengidentifikasi dan menganalisa kegagalan pada produk Woven Bag, dimana terdapat empat jenis kecacatan, yakni cacat anyaman, cacat potong dan jahit, cacat cetakan, dan cacat segel. Puspitasari dan Martanto [4] menggunakan FMEA untuk

¹ Politeknik ATI Padang, Jl. Bungo Pasang Tabing Padang 25171, Indonesia

mengidentifikasi resiko kegagalan yang terjadi selama proses produksi pada pembuatan sarung tenun, dimana tujuannya adalah menganalisa moda kegagalan yang menyebabkan cacat produk. Hasil penelitian menyimpulkan moda kegagalan potensial pada proses pembuatan sarung tenun terdiri dari 14 jenis kegagalan, dimana kegagalan tersebut didapatkan berdasarkan dari kegagalan fungsi alat/proses jenis mesin yang beroperasi pada proses pembuatan sarung tenun.

Penelitian yang sama juga dikemukakan Hanif et al, [5] menggunakan Failure Mode and Effect Analysis (FMEA) untuk meminimalisasi adanya rework yang menimbulkan biaya, dimana setiap divisi produksi menimbulkan cacat diatas 5%. Hasil menunjukkan bahwa nilai RPN kecacatan yang akan dianalisis dengan menggunakan metode FTA yaitu kecacatan retak pada permukaan produk, dan kecacatan pemberian warna dasar yang tidak merata.

Metode ini juga digunakan pada perusahaan manufaktur besi dan baja dimana Anthony [6] menjabarkan hasil penelitian penyebab kerusakan Hot Rooler Table untuk mengidentifikasi dan menganalisis tingkat kerusakan dan penyebabnya dengan penerapan metode FMEA. Berdasarkan hasil penelitian, kerusakan mesin Hot Roller Table didapat bahwa frekuensi kerusakan tertinggi yaitu pada rotary coupling dengan down time presentase sebesar 26,9%. Dari Analisa FMEA, didapat dua komponen yang mempunyai nilai RPN sangat tinggi yang di kategorikan sebagai potential severity yaitu bearing yang pertama dengan nilai RPN sebesar 392 dan yang kedua adalah seal ring dengan nilai RPN sebesar 294. Kedua koponen tersebut menjadi prioritas utama perbaikan pada bagian unit furnace section mill terutama untuk aspek mesin dan manusia. Metoda FMEA ini juga digunakan untuk pencegahan resiko seperti diteliti oleh Andiyanto et al, [7] dan perbaikan kualitas, Hanif et al, [8].

METODOLOGI

Penelitian ini menggunakan metode pendekatan deskriptif [9] untuk menganalisis perawatan mesin Wrapping menggunakan metode Failure Mode And Effect Analysis (FMEA) [10]. Langkah-langkah yang dilakukan dalam melakukan penelitian ini adalah sebagai berikut:

Metode Pengumpulan Data

Yang digunakan adalah studi literatur, wawancara dan kuisioner. Studi literatur dilakukan dengan cara mengumpulkan data atau dokumen terkait penelitian melalui referensi, buku-buku dan wawancara serta

kuisioner dilakukan dengan memberikan pertanyaanpertanyaan kepada bagian mesin *wrapping*.

Analisis Data

Data-data yang akan dianalisis berupa mesin wrapping terdiri dari Pemanas heater, seal, dan pisau pomotong. Prosesnya menggunakan pendekatan FMEA (Failure Mode And Effect Analysis) untuk pengendalian kualitas mesin wrapping pada PT. X. Langkah-langkah FMEA (Failure Mode And Effect Analysis) [7] adalah mengidentifikasi fungsi pada proses produksi, mengidentifikasi potensi failure mode proses produksi, mengidentifikasi potensi efek kegagalan produksi dan engidentifikasi potensi efek kegagalan proses produksi, mengidentifikasi mode-mode deteksi proses produksi, mengidentifikasi mode-mode deteksi proses produksi, menentukan rating terhadap severity, occurance, detecion dan RPN proses produksi dan usulan perbaikan.

Menghitung FMEA

$$Xgeo = \sqrt[n]{x_1} x_2. x_3. x_4. , , , x_5$$
 (1)

n = Jumlah data

 X_1 = Nilai rating ke i

Setelah pemberian rating dilakukan, nilai RPN dari setiap penyebab kegagalan dihitung dengan rumus:

$$RPN = Severity \ x \ Occurance \ x \ Detection$$
 (2)

HASIL DAN PEMBAHASAN

PT. X memiliki dua mesin wrapping sumber pemanas untuk proses produksi pengemasan dus teh dengan menggunakan plastik OPP atau disebut mesin wrapping. Mengingat pentingnya mesin wrapping, maka mesin wrapping haruslah selalu dalam keadaan baik dan siap pakai. Namun selama pengamatan yang dilakukan mesin ini sering mengalami kerusakan. Kerusakan yang terjadi yaitu pada pemanas heater dan seal yang berupa plastik sambungan bawah lipatan kiri kanan pada dinding tersebut, dan pisau pemotong pada plastik tidak berfungsi dengan baik. Kerusakan yang terjadi baik itu kerusakan kecil hingga kerusakan total, maka mesin wrapping tidak dapat beroperasi karena hasil pengemasan dus yang dihasilkan hancur dan rusak serta produk tersebut tidak dapat dikemas dan dipasarkan lagi. Jumlah kerusakan (Breakdown) mesin wrapping selama periode Januari 2019 sampai Maret 2019 dapat dilihat pada tabel 1.

Dari Tabel 1 dapat dilihat total kerusakan dua mesin wrapping selama periode Januari 2019 sampai Maret 2019 yaitu sebanyak 12 kali kerusakan yang menyebabkan *Breakdown*, dimana terjadi kerusakan yang terjadi di mesin 1 sebanyak 7 kali, sedangkan kerusakan yang terjadi dimesin 2 sebanyak 5 kali. Jadi total keseluruhan kerusakan selama 3 bulan tersebut

sebanyak 12 kali. Jika terjadi kerusakan total pada mesin *Wrapping* ini, maka perusahaan harus mengeluarkan biaya perbaikan untuk 1 mesin *Wrapping* yaitu terlihat pada tabel 2 dan jika terjadi kerusakan kecil pada mesin *wrapping* ini, maka biaya yang akan dikeluarkan terlihat pada tabel 3.

Tabel 1. Breakdown Mesin Wrapping Tahun 2019

No	Bulan	Jumlah k	Total	
110	Dulan	Mesin 1	Mesin 2	(Kali)
1	Januari 2019	4	3	7
2	Februari 2019	3	2	5
3	Maret 2019	0	0	0
Total	[7	5	12

Sumber: PT. X.2019

Tabel 2. Biaya Komponen yang Dibutuhkan untuk Memperbaiki Mesin *Wrapping* Jika Rusak Total Tahun 2019

Nama Barang	Harga (Rp)	Kebutuhan	Total (Rp)
Pisau Pemotong	5.000.000	2 Buah	10.000.000
Heater Pemanas	250.000	2 Buah	500.000
Thermocontrol	450.000	2 Buah	900.000
Bearing	100.000	2 Buah	200.000
Sparepart	250.000	4 Buah	1.000.000
Jumlah			12.600.000

Sumber: PT. X 2019

Dari Tabel 2 dapat dilihat bahwa jika mesin Wrapping mengalami kerusakan total maka biaya yang dikeluarkan oleh perusahaan sebesar Rp. 12.600.000 sementara jika biaya kerusakan kecil maka perusahaan harus mengeluarkan sebesar Rp. 5.750.000. pada kerusakan kecil peralatan yang digunakan lebih sedikit kebutuhannya seperti: pisau pemotong, *sparepart*, dan *heater* pemenas dan pada kerusakan peralatan kecil yang sering digunakan jika terjadi kerusakan kecil. Sedangkan kerusakan total peralatan yang digunakan lebih banyak karena sesuai dengan kebutuhan pada saat terjadi kerusakan. yang terlihat pada Tabel 3.

Tabel 3. Biaya Komponen yang Dibutuhkan untuk Memperbaiki Mesin *Wrapping* Jika Rusak Kecil Tahun 2019

Peralatan	Kebutuhan	Harga/Buah		Total	
Pisau	1 Buah	Dn f	5.000.000	Dn.	5 000 000
Pemotong	1 Duan	Kp.	3.000.000	Kp.	3.000.000
Heater	1 buah	Rp	250.000	Rp	250.000
Sparepart	2 Buah	Rp	250.000	Rp	500.000
Jumlah				Rp.	5.750.000

Sumber: PT. X 2019

Selama periode Januari sampai Maret 2019 kerusakan total yang telah terjadi untuk kedua mesin diatas adalah sebanyak 1 kali, sehingga:

Biaya untuk kerusakan total:

 $2 \times Rp12.600.000 = Rp25.200.000$

Dan sebayak 3 kali kerusakan kecil, sehingga:

Biaya kerusakan kecil:

 $3 \times Rp5.750.000 = Rp17.250.000$

Untuk menentukan jenis kerusakan mesin wrapping dengan cara menentukan nilai, *Severity* (keparahan), *Occurance* (keterjadian), *Detection* (deteksi penyebab).

Severity (Keparahan)

Berdasarkan hasil kuisioner menyatakan bahwa Savaerity adalah langkah pertama untuk menganalisa resiko, yaitu menghitung seberapa besar dampak atau intenstas kejadian mempengaruhi hasil akhir proses dan dapat dilihat pada tabel 4.

Tabel 4. Nilai Severity (Keparahan)

Pengaruh	Severity	Rangking
Berbahaya tanpa peringatan	Tingkat keparahan yang sangat tinggi ketika model kegagalan potensial mempengaruhi operasional sistim yang aman tanpa peringatan	10
Berbahaya dengan peringatan	Tingkat keparahan yang sangat tinggi ketika model kegagalan potensial mempengaruhi operasi sistim yang aman dengan peringatan	9
Sangat tinggi	Sistim operasi dengan gagal merusak tanpa mengorbankan keselamatan	8
Tinggi	Sistim beroperasi dengan kerusakan	7
Sedang	Sistim bisa operasi rusak ringan	6
Rendah	Sistim beroperasi tanpa rusak ringan	5
Sangat rendah	Sistim beroperasi dengan penurunan yang signifikan dari kinerja	4
Kecil	Sistim dapat dioperasikan dengan beberapa penurunan kinerja	3
Sangat kecil	Sistim beroperasi dengan minimal gangguan	2
Tidak	Tidak ada efek	1

Tabel 5. Hasil Kuisioner Severity

Komponer	Bentuk	Mandor	Opr	Opr	Quality
Komponen	Kegagalan	Besar	Mesin	Mesin	Control
Pisau	Tidak tajam	3	6	5	5
pemotong		3	O	3	3
Heater	Plastik tidak	7	6	6	6
пешет	lengket	/	O		
	Pengaturan				
	suhunya tidak				
Thermo	konstan	5	6	6	6
Control	menyebabkan	5	Ü	U	6
	suhu sering				
	berubah				
	Berputar tidak				
	seimbang.				
Bearing	Silinder	6	6	4	4
	penggerak				
	bearing hilang				

Nilai *Saverity* (S) didapat dari format kuesinoner saverity dan didalam kuesioner tersebut terdapat pembobotan dari rating 1-10. Hal ini dapat dilihat pada tabel 5.

a) Pisau Pemotong

Saverity =
$$\sqrt[4]{3.6.5.5}$$

= $\sqrt[4]{450}$
= 4.6 \Rightarrow 5

b) Heater Pemanas

Saverity =
$$\sqrt[4]{7.6.6.6}$$

= $\sqrt[4]{1512}$
= 6.2 \Rightarrow 6

c) Thermo Control

Saverity =
$$\sqrt[4]{5.6.6.6}$$

= $\sqrt[4]{1080}$
= 5.7 \rightarrow 6

d) Bearing

Saverity =
$$\sqrt[4]{6.6.4.4}$$

= $\sqrt[4]{385}$
= 4.4 \Rightarrow 4

Occurance (Keterjadian)

Apabila ditentukan rating pada proses *saverity*, maka tahap selanjutnya adalah menentukan rating terhadap nilai *occurance*. *Occurance* yang merupakan kemungkinan bahwa penyebab kerusakan yang terjadi. Skala dalam penilaian rating dalam tabel *occurance* dimulai dari skala 1-10, dimana rating 10 berada pada tingkat kejadian kegagalan pada proses produksi yang paling tinggi. Hal ini dapat dilihat pada tabel 6. Selanjutnya Nilai *Occurance* (O) didapat dari format kuesinoner dan dalam kuesioner tersebut terdapat pembobotan dari rating 1-10. Hal ini dapat dilihat pada tabel 7.

Tabel 6. Nilai Occurance

Probabilitas dari Kegagalan	Kegagagalan Probabilitas	Rangking
Sangat tinggi: kegagalan	>1 dalam 2	10
hampir tidak terhindar	>1 dalam 3	9
Tinggi: berulang	1 dalam 8	8
kegagalan	1 dalam 20	7
Sadana: kagagalan	1 dalam 80	6
Sedang: kegagalan sesekali	1 dalam 400	5
Seseran	1 dalam 2.000	4
Rendah: relatif sedikit	1 dalam 15.000	3
Kendan, relatii sedikit	1 dalam 150.000	2
Remote: kegagalan tidak mungkin	< dalam 1.500.000) 1

Tabel 7 Hasil Kuisioner Occurance

V	Bentuk	Mandor	Opr	Opr	Quality
Komponen	Kegagalan	Besar	Mesin	Mesin	Control
Pisau	Tidals taiom	1	5	5	5
pemotong	Tidak tajam	1	3	3	5
Heater	Plastik tidak	1	5	4	4
пешет	lengket	1	3	4	
	Pengaturan				
	suhu tidak	1	4	5	5
Thermo	konstan				
Control	menyebabkan				
	suhu sering				
	berubah				
	Berputar tidak				
	seimbang.		4	4	4
Bearing	Silinder	1			
	penggerak				
	bearing hilang				

a) Pisau Pemotong

Occurance =
$$\sqrt[4]{1.5.5.5}$$

= $\sqrt[4]{125}$
= 3.3 \rightarrow 4

b) Heater Pemanas

$$Occurance = \sqrt[4]{1.5.4.4}$$
$$= \sqrt[4]{80}$$
$$= 2.9 \Rightarrow 3$$

c) Thermo Control

$$Occurance = \sqrt[4]{1.4.5.5}$$
$$= \sqrt[4]{100}$$
$$= 3.1 \rightarrow 3$$

d) Bearing

Occurance =
$$\sqrt[4]{1.4.4.4}$$

= $\sqrt[4]{64}$
= 2.8 \Rightarrow 3

Detection (Deteksi Penyebab)

Detection merupakan suatu upaya untuk mengetahui setiap metode kerusakan yang terjadi pada mesin wrapping. Rank penilaian tabel detection dan di dalam

kuesioner tersebut pembobotan dari *rating* 1-10. Hal ini dapat dilihat pada tabel 8. Nilai *Detection* (D) didapat dari format *kuesinoner* dan di dalam *kuesioner* tersebut terdapat pembobotan dari *rating* 1-10. Hal ini dapat dilihat pada tabel 9.

Tabel 8 Nilai Detection

Detelrai	Kemungkinan Deteksi	Donking
Deteksi	dengan Desain Pengendalian	Ranking
Ketidak	Desain kontrol tidak dapat	
tentuan yang	mendeteksi potensi	10
absolut atau	penyebab/mekanisme dan	
mutlak	modus kegagalan berikutnya	
Sangat	Kesempatan kontrol desain	
terpencil	akan mendeteksi potensi	9
	penyebab/mekanisme dan	
	model kegagalan berikutnya	
Sangat	Yang sangat rendah	
rendah	kesempatan kontrol desain	7
	akan mendeteksi potensi	
	penyebab/mekanisme dan	
	model kegagalan berikutnya	
Rendah	Rendah kesempatan kontrol	
	desain akan mendeteksi	6
	potensi penyebab/mekanisme	
	dan model kegagalan berikut	
Moderat	Sedang kesempatan kontrol	
	desain akan mendeteksi	5
	potensi penyebab/mekanisme	
	dan model kegagalan	
	berikutnya	
Cukup tinggi	Cukup tinggi kesempatan	
	kontrol desain akan	4
	mendeteksi potensi	
	penyebab/mekanisme dan	
	model kegagalan berikutnya	
Tinggi	Tinggi kesempatan kontrol	
	desain akan mendeteksi	3
	potensi penyebab/mekanisme	
	dan model kegagalan	
	berikutnya	
Sangat tinggi	Sangat tinggi kesempatan	
	kontrol desain akan	2
	mendeteksi potensi	
	penyebab/mekanisme dan	
	model kegagalan berikutnya	
Hampir	Kontrol desain akan	
tertentu	mendeteksi potensi	1
	penyebab/mekanisme dan	
	model kegagalan berikutnya	

Tabel 9. Hasil Kuisoner Detection

Vamnanan	Bentuk	Mandor	Opr	Opr	Quality
Komponen	Kegagalan	Besar	Mesin	Mesin	Control
Pisau	Tidala taione	0	2	(-
pemotong	Tidak tajam	8	3	6	6
Heater	Plastik tidak	9	3	5	5
пешет	lengket	9	3	3	
	Pengaturan				
	suhu tidak	3	3	5	5
Thermo	konstan				
Control	menyebabkan				
	suhu sering				
	berubah				
	Berputar tidak				
	seimbang.			6	6
Bearing	Silinder	2	3		
	penggerak				
	bearing hilang				

Detection =
$$\sqrt[4]{8.3.6.6}$$

= $\sqrt[4]{432}$
= 4,5 \rightarrow 5

b) Heater Pemanas

Detection =
$$\sqrt[4]{9.3.5.5}$$

= $\sqrt[4]{675}$
= 5

c) Thermo Control

Detection =
$$\sqrt[4]{3.3.5.5}$$

= $\sqrt[4]{225}$
= 3.8 → 4

d) Bearing

Detction =
$$\sqrt[4]{2.3.6.6}$$

= $\sqrt[4]{216}$
= 2,8 \Rightarrow 3

Nilai Risk Priority Number (RPN)

Nilai dari *Risk Priority Number* (RPN) dihitung dengan menggunakan rumus :

RPN = *Severity x Occurrance x Detection*. Hal ini dapat dilihat pada tabel 10.

Tabel 10. Nilai Risk Priority Number (RPN)

No	Jenis-Jenis Kerusakan	S	0	D	RPN
1	Pisau pemotong	5	4	5	100
2	Heater	6	3	5	90
3	Thermo Control	6	3	4	72
4	Bearing	4	3	3	36
Tota	ıl				298

Berdasarkan tabel 10 di atas, jenis-jenis kerusakan yang mempunyai pengaruh tertinggi adalah pisau pemotong dengan nilai RPN 100 karena pisau pemotong mendapatkan pembobotan nilai dari *severity*, *occurance* dan detection yang relatif tinggi. Setelah mengetahui penyebab tingginya pisau pemotong yang terjadi pada

mesin *wrapping* saat proses pembungkusan dus teh di PT X. Adapun langkah perbaikan mutu pada pisau pemotong sebagai berikut:

Tabel 11. Usulan Tindakan Perbaikan

Faktor	Masalah	Penyebab	Rencana
T aniui	wiasaiaii	1 chyebab	Perbaikan
Material	Bahan pisau		1. Mengganti
	pemotong		pisau
	kurang		pemotong
	bagus		yang rusak
			dengan yang
			lebih bagus
			2. Melakukan
			pengecekan
			rutin terhadap
			mesin
			wrapping
Kontruksi	Mata pisau	Usia	1. Mengasah
Mesin	sudah	pemakaian	kembali
	tumpul	pisau	mata pisau
			yang sudah
			tumpul
			2. Melakukan
			pemeriksaan
			rutin agar
			mesin jadi
			terawat
Metode	Hanya satu	Tidak	Mengatur
Kerja	mesin yang	adanya	waktu
	dipakai	jadwal	pemakaian
	perusahaan	pemakaian	mesin agar
		mesin	mesin tidak
			cepat aus.

KESIMPULAN

Berdasarkan pembahasan yang telah dilakukan, maka dapat diambil kesimpulan bahwa kendala-kendala yang terjadi pada mesin wrapping yaitu: pisau pemotong tumpul, heater, thermo control, dan bearing rusak. Dari semua kendala-kendala yang terjadi pada mesin wrapping yang memiliki pengaruh terbesar pada kinerja mesin wrapping adalah pisau pemotong yang sudah tumpul merupakan kerusakan yang sudah sering terjadi sehingga menyebabkan plastik wrapping tersebut tidak terpotong secara rapi dan membuat buruk kualitas dari kemasan dus teh.

DAFTAR PUSTAKA

[1] Assauri, S. *Manajemen Produksi dan Operasi*. Jakarta: Fakultas Ekonomi Universitas Indonesia, 2008.

- [2] Reza, Dicky., Supriyadi,. R. Gina. 2017. "Analisis Kerusakan Mesin Mandrel Tension Reel Dengan Menggunakan Metode Failure Mode and Effect Analysis (FMEA)". dalam *Prosiding Seminar Nasional Riset Terapan*, 2017, pp 190-195.
- [3] Sari, D.P., Z. F. Rosyada., N. Rahmadhani. "Analisa Penyebab Kegagalan Produk Woven Bag dengan Menggunakan Metode Failure Mode and Effects Analysis (Studi Kasus di PT Indomaju Textindo Kudus)". dalam *Prosiding Seminar Nasional Sains dan Teknologi*, 2011, pp 6-11.
- [4] Puspitasari, N. B., A. Martanto. "Penggunaan FMEA dalam Mengidentifikasi Resiko Kegagalan Proses Produksi Sarung ATM (Alat Tenun Mesin) (Studi Kasus PT. Asaputex Jaya Tegal)". *J@TI Undip: Jurnal Teknik Industri*, Volume 9, Mei 2014, Pages 93-98.
- [5] Hanif, R. Y., H. S. Rukmi., S. Susanty. "Perbaikan Kualitas Produk Keraton Luxury di PT. X dengan Menggunakan Metode Failure Mode and Effect Analysis (FMEA) dan Fault Tree Analysis (FTA)". Reka Integra, Volume 3, 2015, Pages 137-147.
- [6] M. B. Anthony. "ANALISIS PENYEBAB KERUSAKAN HOT ROOLER TABLE DENGAN MENGGUNAKAN METODE FAILURE MODE AND EFFECT ANALYSIS(FMEA)". *J. INTECH.* Vol. 4, No. 1, pp. 1-8, 2016.
- [7] S. Andiyanto., A. Sutrisno., C. Punuhsingon. "PENERAPAN METODE FMEA (FAILURE MODE AND EFFECT ANALYSIS) UNTUK KUANTIFIKASI DAN PENCEGAHAN RESIKO AKIBAT TERJADINYA LEAN WASTE". *J. Poros Teknik Mesin UNSRAT*. Vol. 6, No. 1, pp. 45-57, 2017.
- [8] R. Y. Hanif., H. S. Rukmi., S. Susanty. "PERBAIKAN KUALITAS PRODUK KERATON LUXURY DI PT. X DENGAN MENGGUNAKAN METODE FAILURE MODE and EFFECT ANALYSIS (FMEA) dan FAULT TREE ANALYSIS (FTA)". Reka Integra: Jurnal Teknik Industri (E-Journal). Vol. 3, No. 3, pp. 137-147, 2015.
- [9] Sukmadinata, N. S. *Metode Penelitian Pendidikan*. Bandung: Remaja Rosadakarya, 2011.
- [10] McDermott et al. *The Basics of FMEA 2nd edition*. New York: CRC Press, 2009.