Komparasi Metode Regresi Linier, Exponential Smoothing dan ARIMA Pada Peramalan Volume Ekspor Minyak Kelapa Sawit di Indonesia
DOI:
https://doi.org/10.52759/inventory.v3i1.74Keywords:
ARIMA, Export, Exponential Smoothing, Forecasting, Linear RegressionAbstract
This study aims to compare several methods to get the best methods on forecasting the volume of Indonesian palm oil exports. In addition, this study also aims to estimate the volume of Indonesian palm oil exports for the next five years. Some of the forecasting methods used in this study are linear regression, exponential smoothing, and ARIMA. The data used is historical data on the volume of palm oil exports from 1981 to 2020. The results of calculations and analysis show that the exponential smoothing model of the damped trend method produces the smallest error value compared to other methods, the MAD value is 860,353, the MSE value is 1,707,738,707,222, the RSME value is 1,306,805, and the MAPE value is 20.6%. This method has chosen to be the best forecasting method for the next five years. The forecast results obtained that the volume of Indonesian palm oil exports for the next five years are28.864.223,31 tons, 28.967.062,92 tons, 29.064.976,80 tons, 29.158.200,89 tons, and 29.246.959,81 tons.
Downloads
References
H. dan P. Direktorat Statistik Tanaman Pangan,
Statistik Kelapa Sawit Indonesia 2020, vol. 25, no.
Jakarta: Badan Pusat Statistik, 2021.
T. Yuniarti, I. Rusmar, T. R. Hidayani, and M.
Mirnandaulia, “Penggunaan Artificial Neural
Network (ANN) untuk Memodelkan Volume
Ekspor Crude Palm Oil (CPO) di Indonesia,”
Ready Star Reg. Dev. Ind. Heal. Sci. Technol. Art
Life, vol. 2, no. 1, pp. 247–255, 2019.
L. Apriyanti, A. Setiadi, and S. I. Santoso,
“Analisis Peramalan Volume Ekspor Melon di PT
Bumi Lestari Temanggung Jawa Tengah
(Analysis Forecasting Of Melon Export Volume
In PT. Bumi Sari Lestari Temanggung Central
Java),” J. Ekon. Pertan. dan Agribisnis, vol. 0, no.
, pp. 2–10, 2017.
M. W. Putri and F. N. Azizah, “Perbandingan
Metode Peramalan Moving Average , Single
Exponential Smoothing , dan Trend Analysis pada
Permintaan Produksi Art Board ( Studi Kasus PT
Pindo Deli Pulp and Paper Mills 1 ) Comparison
of Moving Average , Single Exponential
Smoothing , and Tren,” J. Rekayasa Sist. dan Ind.,
I. A. Zahra, “Analisis Perbandingan Teknik
Peramalan Kebutuhan Obat Dengan Metode
Arima Dan Single Eksponensial Smoothing Studi
Kasus: Rsud Indramayu,” J. Tata Kelola dan
Kerangka Kerja Teknol. Inf., vol. 5, no. 1, 2019.
Y. Xiao and Z. Jin, “The Forecast Research of
Linear Regression Forecast Model in National
Economy,” OALib, vol. 08, no. 08, pp. 1–17,
A. Pamungkas, R. Puspasari, A. Nurfiarini, R.
Zulkarnain, and W. Waryanto, “Comparison of
Exponential Smoothing Methods for Forecasting
Marine Fish Production in Pekalongan Waters,
Central Java,” IOP Conf. Ser. Earth Environ. Sci.,
vol. 934, no. 1, 2021.
M. Pradeep et al., “State of the arty in total pulse
production in major states of India using ARIMA
techniques,” Curr. Res. Foof Sci., vol. 4, pp. 800
, 2021.
A. Lusiana and P. Yuliarty, “Penerapan Metode
Peramalan (Forecasting) pada Permintaan Atap di
PT X,” Ind. Inov. J. Tek. Ind., vol. 10, no. 1, pp.
–20, 2020.
K. Posch, C. Truden, P. Hungerländer, and J. Pilz,
“A Bayesian approach for predicting food and
beverage sales in staff canteens and restaurants,”
Int. J. Forecast., vol. 38, no. 1, pp. 321–338, 2022.
W. Ngestisari, B. Susanto, and T. Mahatma,
“Perbandingan Metode ARIMA dan Jaringan
Syaraf Tiruan untuk Peramalan Harga Beras,”
Indones. J. Data Sci., vol. 1, no. 3, pp. 96–107,
R. Jamil, “Hydroelectricity consumption forecast
for Pakistan using ARIMA modeling and supply
demand analysis for the year 2030,” Renew.
Energy, vol. 154, pp. 1–10, 2020.
Zulkarnaini and H. Riandi, “Analisa Peramalan
Beban Listrik Di RSUP Dr . M . Djamil Padang
Sampai Tahun 2029,” MENARA Ilmu, vol. XIV,
no. 01, pp. 134–145, 2020.
A. H. Al Rosyid, C. D. N. Viana, and W. A.
Saputro, “Penerapan Model Box Jenkins (Arima)
Dalam Peramalan Harga Konsumen Bawang
Merah Di Provinsi Jawa Tengah,” Agri Wiralodra,
vol. 13, no. 1, pp. 29–37, 2021.




