Komparasi Metode Regresi Linier, Exponential Smoothing dan ARIMA Pada Peramalan Volume Ekspor Minyak Kelapa Sawit di Indonesia

Authors

  • Trisna Yuniarti Politeknik APP Jakarta Author
  • Juli Astuti Politeknik APP Jakarta Author
  • Irfan Rusmar Politeknik Teknologi Kimia Industri Author
  • Ika Widiana Politeknik AKA Bogor Author
  • Fajar Ciputra Daeng Bani Politeknik APP Jakarta Author

DOI:

https://doi.org/10.52759/inventory.v3i1.74

Keywords:

ARIMA, Export, Exponential Smoothing, Forecasting, Linear Regression

Abstract

This study aims to compare several methods to get the best methods on forecasting the volume of Indonesian palm oil exports. In addition, this study also aims to estimate the volume of Indonesian palm oil exports for the next five years. Some of the forecasting methods used in this study are linear regression, exponential smoothing, and ARIMA. The data used is historical data on the volume of palm oil exports from 1981 to 2020. The results of calculations and analysis show that the exponential smoothing model of the damped trend method produces the smallest error value compared to other methods, the MAD value is 860,353, the MSE value is 1,707,738,707,222, the RSME value is 1,306,805, and the MAPE value is 20.6%. This method has chosen to be the best forecasting method for the next five years. The forecast results obtained that the volume of Indonesian palm oil exports for the next five years are28.864.223,31 tons, 28.967.062,92 tons, 29.064.976,80 tons, 29.158.200,89 tons, and 29.246.959,81 tons.

Downloads

Download data is not yet available.

References

H. dan P. Direktorat Statistik Tanaman Pangan,

Statistik Kelapa Sawit Indonesia 2020, vol. 25, no.

Jakarta: Badan Pusat Statistik, 2021.

T. Yuniarti, I. Rusmar, T. R. Hidayani, and M.

Mirnandaulia, “Penggunaan Artificial Neural

Network (ANN) untuk Memodelkan Volume

Ekspor Crude Palm Oil (CPO) di Indonesia,”

Ready Star Reg. Dev. Ind. Heal. Sci. Technol. Art

Life, vol. 2, no. 1, pp. 247–255, 2019.

L. Apriyanti, A. Setiadi, and S. I. Santoso,

“Analisis Peramalan Volume Ekspor Melon di PT

Bumi Lestari Temanggung Jawa Tengah

(Analysis Forecasting Of Melon Export Volume

In PT. Bumi Sari Lestari Temanggung Central

Java),” J. Ekon. Pertan. dan Agribisnis, vol. 0, no.

, pp. 2–10, 2017.

M. W. Putri and F. N. Azizah, “Perbandingan

Metode Peramalan Moving Average , Single

Exponential Smoothing , dan Trend Analysis pada

Permintaan Produksi Art Board ( Studi Kasus PT

Pindo Deli Pulp and Paper Mills 1 ) Comparison

of Moving Average , Single Exponential

Smoothing , and Tren,” J. Rekayasa Sist. dan Ind.,

I. A. Zahra, “Analisis Perbandingan Teknik

Peramalan Kebutuhan Obat Dengan Metode

Arima Dan Single Eksponensial Smoothing Studi

Kasus: Rsud Indramayu,” J. Tata Kelola dan

Kerangka Kerja Teknol. Inf., vol. 5, no. 1, 2019.

Y. Xiao and Z. Jin, “The Forecast Research of

Linear Regression Forecast Model in National

Economy,” OALib, vol. 08, no. 08, pp. 1–17,

A. Pamungkas, R. Puspasari, A. Nurfiarini, R.

Zulkarnain, and W. Waryanto, “Comparison of

Exponential Smoothing Methods for Forecasting

Marine Fish Production in Pekalongan Waters,

Central Java,” IOP Conf. Ser. Earth Environ. Sci.,

vol. 934, no. 1, 2021.

M. Pradeep et al., “State of the arty in total pulse

production in major states of India using ARIMA

techniques,” Curr. Res. Foof Sci., vol. 4, pp. 800

, 2021.

A. Lusiana and P. Yuliarty, “Penerapan Metode

Peramalan (Forecasting) pada Permintaan Atap di

PT X,” Ind. Inov. J. Tek. Ind., vol. 10, no. 1, pp.

–20, 2020.

K. Posch, C. Truden, P. Hungerländer, and J. Pilz,

“A Bayesian approach for predicting food and

beverage sales in staff canteens and restaurants,”

Int. J. Forecast., vol. 38, no. 1, pp. 321–338, 2022.

W. Ngestisari, B. Susanto, and T. Mahatma,

“Perbandingan Metode ARIMA dan Jaringan

Syaraf Tiruan untuk Peramalan Harga Beras,”

Indones. J. Data Sci., vol. 1, no. 3, pp. 96–107,

R. Jamil, “Hydroelectricity consumption forecast

for Pakistan using ARIMA modeling and supply

demand analysis for the year 2030,” Renew.

Energy, vol. 154, pp. 1–10, 2020.

Zulkarnaini and H. Riandi, “Analisa Peramalan

Beban Listrik Di RSUP Dr . M . Djamil Padang

Sampai Tahun 2029,” MENARA Ilmu, vol. XIV,

no. 01, pp. 134–145, 2020.

A. H. Al Rosyid, C. D. N. Viana, and W. A.

Saputro, “Penerapan Model Box Jenkins (Arima)

Dalam Peramalan Harga Konsumen Bawang

Merah Di Provinsi Jawa Tengah,” Agri Wiralodra,

vol. 13, no. 1, pp. 29–37, 2021.

Downloads

Published

2022-06-30

Issue

Section

Articles