Penerapan Model ARIMA Dalam Memprediksi Penjualan Produk Minuman Teh Botol Sosro Ukuran 350 mL
Abstract
This study aims to provide suggestions for improvements in overcoming stock shortages of soft drink products using a forecasting method. The results of such forecasting will be compared with the forecasting methods used by the company at this time. The Autoregressive Integrated Moving Average (ARIMA) method was used in this study to improve the accuracy of demand forecasting in soft drink products (TBE 350 mL K12 Aseptic). This study used product sales data for the period January 2016 to January 2022. Based on the results of calculation and data processing, it is known that the best model is ARIMA (2,1,0) with a MAPE value of 35,966%. Meanwhile, the method used by the company has a MAPE value of 36.569%. It Shows that the ARIMA method (2,1,0) has better forecasting accuracy compared to the company's forecasting method with a MAPE difference of 0.604%. The validation results were obtained forecasting in January 2022 with ARIMA (2,1,0) of 22,569 cartons, while the company's method was 21,194 cartons. This shows that the ARIMA method (2,1,0) is more accurate in forecasting because it has a forecast value in the January 2022 period close to the actual demand value, which is 23,193 cartons. The ARIMA model equation (2,1,0) for forecasting soft drink products in the following month is Zt = 0,494Zt-1 + 0,210Zt-2 + 0,297Zt-3
Keywords
Full Text:
PDFReferences
S. Shankar, P. V. Ilavarasan, S. Punia, and S. P. Singh, “Forecasting container throughput with long short-term memory networks,” Ind. Manag. Data Syst., vol. 120, no. 3, pp. 425–441, 2020, doi: 10.1108/IMDS-07-2019-0370.
F. Petropoulos et al., “Forecasting: theory and practice,” Int. J. Forecast., vol. 38, no. 3, pp. 705–871, 2022, doi: 10.1016/j.ijforecast.2021.11.001.
D. R. Indah and E. Rahmadani, “Sistem Forecasting Perencanaan Produksi dengan Metode Single Eksponensial Smoothing pada Keripik Singkong Srikandi Di Kota Langsa,” J. Penelit. Ekon. Akunt., vol. 2, no. 1, pp. 10–18, 2018, [Online]. Available: https://ejurnalunsam.id/index.php/jensi/article/view/930.
S. I. Busari and T. K. Samson, “Modelling and forecasting new cases of Covid-19 in Nigeria: Comparison of regression, ARIMA and machine learning models,” Sci. African, vol. 18, p. e01404, 2022, doi: 10.1016/j.sciaf.2022.e01404.
B. Dey, B. Roy, S. Datta, and T. S. Ustun, “Forecasting ethanol demand in India to meet future blending targets: A comparison of ARIMA and various regression models,” Energy Reports, vol. 9, pp. 411–418, 2023, doi: 10.1016/j.egyr.2022.11.038.
M. Ohyver and H. Pudjihastuti, “Arima Model for Forecasting the Price of Medium Quality Rice to Anticipate Price Fluctuations,” Procedia Comput. Sci., vol. 135, pp. 707–711, 2018, doi: 10.1016/j.procs.2018.08.215.
P. Rostan, A. Rostan, and M. Nurunnabi, “Options trading strategy based on ARIMA forecasting,” PSU Res. Rev., vol. 4, no. 2, pp. 111–127, 2020, doi: 10.1108/PRR-07-2019-0023.
W. S. Rahayu, P. T. Juwono, and W. Soetopo, “Analisis Prediksi Debit Sungai Amprong Dengan Model Arima (Autoregressive Integrated Moving Average) Sebagai Dasar Penyusunan Pola Tata Tanam,” J. Tek. Pengair., vol. 10, no. 2, pp. 110–119, 2019, doi: 10.21776/ub.pengairan.2019.010.02.04.
F. Fejriani, M. Hendrawansyah, L. Muharni, S. F. Handayani, and Syaharuddin, “Forecasting Peningkatan Jumlah Penduduk Berdasarkan Jenis Kelamin menggunakan Metode Arima,” J. Kajian, Penelit. dan Pengemb. Pendidik., vol. 8, no. 1 April, pp. 27–36, 2020, [Online]. Available: http://journal.ummat.ac.id/index.php/geography/article/view/2261/pdf.
T. Yuniarti, I. Surjandari, E. Muslim, and E. Laoh, “Data mining approach for short term load forecasting by combining wavelet transform and group method of data handling (WGMDH),” Proceeding - 2017 3rd Int. Conf. Sci. Inf. Technol. Theory Appl. IT Educ. Ind. Soc. Big Data Era, ICSITech 2017, vol. 2018-Janua, pp. 53–58, 2017, doi: 10.1109/ICSITech.2017.8257085.
R. Yuliyanti and E. Arliani, “Forecasting the number of population using the arima,” J. Kaji. dan Terap. Mat., vol. 8, pp. 114–128, 2023.
M. B. Pamungkas and A. Wibowo, “Aplikasi Metode Arima Box-,” Indones. J. Public Heal., vol. 13, pp. 181–194, 2018, doi: 10.20473/ijph.vl13il.2018.181-194.
R. A. Pitaloka, Sugito, and R. Rahmawati, “Perbandingan Metode ARIMA BOX-JENKINS dengan ARIMA Ensemble pada peramalan Nilai Impor Provinsi Jawa Tengah,” vol. 8, no. 2008, pp. 194–207, 2019.
F. A. Awwad, M. A. Mohamoud, and M. R. Abonazel, “Estimating COVID-19 cases in Makkah region of Saudi Arabia: Space-time ARIMA modeling,” PLoS One, vol. 16, no. 4 April, pp. 1–16, 2021, doi: 10.1371/journal.pone.0250149.
D. Fahmeyzan, S. Soraya, and D. Etmy, “Uji Normalitas Data Omzet Bulanan Pelaku Ekonomi Mikro Desa Senggigi dengan Menggunakan Skewness dan Kurtosi,” J. VARIAN, vol. 2, no. 1, pp. 31–36, 2018, doi: 10.30812/varian.v2i1.331.
N. S. R. Ginantra, “Penerapan Metode Single Exponential Smoothing dalam Peramalan Penjualan Benang,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 10, no. 3, pp. 154–159, 2021, doi: 10.30591/smartcomp.v10i3.2887.
Refbacks
- There are currently no refbacks.