Komparasi Metode Regresi Linier, Exponential Smoothing dan ARIMA Pada Peramalan Volume Ekspor Minyak Kelapa Sawit di Indonesia
Abstract
This study aims to compare several methods to get the best methods on forecasting the volume of Indonesian palm oil exports. In addition, this study also aims to estimate the volume of Indonesian palm oil exports for the next five years. Some of the forecasting methods used in this study are linear regression, exponential smoothing, and ARIMA. The data used is historical data on the volume of palm oil exports from 1981 to 2020. The results of calculations and analysis show that the exponential smoothing model of the damped trend method produces the smallest error value compared to other methods, the MAD value is 860,353, the MSE value is 1,707,738,707,222, the RSME value is 1,306,805, and the MAPE value is 20.6%. This method has chosen to be the best forecasting method for the next five years. The forecast results obtained that the volume of Indonesian palm oil exports for the next five years are28.864.223,31 tons, 28.967.062,92 tons, 29.064.976,80 tons, 29.158.200,89 tons, and 29.246.959,81 tons.
Keywords
Full Text:
PDFReferences
H. dan P. Direktorat Statistik Tanaman Pangan, Statistik Kelapa Sawit Indonesia 2020, vol. 25, no. 1. Jakarta: Badan Pusat Statistik, 2021.
T. Yuniarti, I. Rusmar, T. R. Hidayani, and M. Mirnandaulia, “Penggunaan Artificial Neural Network (ANN) untuk Memodelkan Volume Ekspor Crude Palm Oil (CPO) di Indonesia,” Ready Star Reg. Dev. Ind. Heal. Sci. Technol. Art Life, vol. 2, no. 1, pp. 247–255, 2019.
L. Apriyanti, A. Setiadi, and S. I. Santoso, “Analisis Peramalan Volume Ekspor Melon di PT Bumi Lestari Temanggung Jawa Tengah (Analysis Forecasting Of Melon Export Volume In PT. Bumi Sari Lestari Temanggung Central Java),” J. Ekon. Pertan. dan Agribisnis, vol. 0, no. 0000, pp. 2–10, 2017.
M. W. Putri and F. N. Azizah, “Perbandingan Metode Peramalan Moving Average , Single Exponential Smoothing , dan Trend Analysis pada Permintaan Produksi Art Board ( Studi Kasus PT Pindo Deli Pulp and Paper Mills 1 ) Comparison of Moving Average , Single Exponential Smoothing , and Tren,” J. Rekayasa Sist. dan Ind.,[1] H. dan P. Direktorat Statistik Tanaman Pangan, Statistik Kelapa Sawit Indonesia 2020, vol. 25, no. 1. Jakarta: Badan Pusat Statistik, 2021.
T. Yuniarti, I. Rusmar, T. R. Hidayani, and M. Mirnandaulia, “Penggunaan Artificial Neural Network (ANN) untuk Memodelkan Volume Ekspor Crude Palm Oil (CPO) di Indonesia,” Ready Star Reg. Dev. Ind. Heal. Sci. Technol. Art Life, vol. 2, no. 1, pp. 247–255, 2019.
L. Apriyanti, A. Setiadi, and S. I. Santoso, “Analisis Peramalan Volume Ekspor Melon di PT Bumi Lestari Temanggung Jawa Tengah (Analysis Forecasting Of Melon Export Volume In PT. Bumi Sari Lestari Temanggung Central Java),” J. Ekon. Pertan. dan Agribisnis, vol. 0, no. 0000, pp. 2–10, 2017.
M. W. Putri and F. N. Azizah, “Perbandingan Metode Peramalan Moving Average , Single Exponential Smoothing , dan Trend Analysis pada Permintaan Produksi Art Board ( Studi Kasus PT Pindo Deli Pulp and Paper Mills 1 ) Comparison of Moving Average , Single Exponential Smoothing , and Tren,” J. Rekayasa Sist. dan Ind., vol. 8, no. Nomor 02, pp. 104–109, 2021.
I. A. Zahra, “Analisis Perbandingan Teknik Peramalan Kebutuhan Obat Dengan Metode Arima Dan Single Eksponensial Smoothing Studi Kasus: Rsud Indramayu,” J. Tata Kelola dan Kerangka Kerja Teknol. Inf., vol. 5, no. 1, 2019.
Y. Xiao and Z. Jin, “The Forecast Research of Linear Regression Forecast Model in National Economy,” OALib, vol. 08, no. 08, pp. 1–17, 2021.
A. Pamungkas, R. Puspasari, A. Nurfiarini, R. Zulkarnain, and W. Waryanto, “Comparison of Exponential Smoothing Methods for Forecasting Marine Fish Production in Pekalongan Waters, Central Java,” IOP Conf. Ser. Earth Environ. Sci., vol. 934, no. 1, 2021.
M. Pradeep et al., “State of the arty in total pulse production in major states of India using ARIMA techniques,” Curr. Res. Foof Sci., vol. 4, pp. 800–806, 2021.
A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) pada Permintaan Atap di PT X,” Ind. Inov. J. Tek. Ind., vol. 10, no. 1, pp. 11–20, 2020.
K. Posch, C. Truden, P. Hungerländer, and J. Pilz, “A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants,” Int. J. Forecast., vol. 38, no. 1, pp. 321–338, 2022.
W. Ngestisari, B. Susanto, and T. Mahatma, “Perbandingan Metode ARIMA dan Jaringan Syaraf Tiruan untuk Peramalan Harga Beras,” Indones. J. Data Sci., vol. 1, no. 3, pp. 96–107, 2020.
R. Jamil, “Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030,” Renew. Energy, vol. 154, pp. 1–10, 2020.
Zulkarnaini and H. Riandi, “Analisa Peramalan Beban Listrik Di RSUP Dr . M . Djamil Padang Sampai Tahun 2029,” MENARA Ilmu, vol. XIV, no. 01, pp. 134–145, 2020.
A. H. Al Rosyid, C. D. N. Viana, and W. A. Saputro, “Penerapan Model Box Jenkins (Arima) Dalam Peramalan Harga Konsumen Bawang Merah Di Provinsi Jawa Tengah,” Agri Wiralodra, vol. 13, no. 1, pp. 29–37, 2021.
Refbacks
- There are currently no refbacks.